
Towards a Framework to Facilitate the Mobile
Advertising Ecosystem

Gong Chen†, Shouling Ji‡,†, and John A. Copeland†
†Georgia Institute of Technology, U.S.A.

‡Zhejiang University, China

gong.chen@gatech.edu, sji@gatech.edu, jcopeland@ece.gatech.edu

Abstract—To date, app developers are allowed to monetize
their apps in two services: in-app advertising and in-app billing.
Of these two, in-app billing is not prevalently used by users,
whereas in-app advertising is considered an important funding
source for developers. However, this service incurs a number of
criticisms: (1) users must passively receive all mobile ads while
using apps, (2) users get nothing from viewing or clicking ads, (3)
ad networks transfer user private information to remote servers
in an unencrypted format without user consent, and (4) negative
impressions brought from irrelevant ads may harm the advertised
brands. To overcome these problems, we propose In-App AdPay, a
framework that combines the advantages of “in-app advertising”
and “in-app billing” together so that ad networks can overtly ask
users’ permissions in order to serve more tailored ads, but in
return, advertisers will pay targeted users’ virtual transactions
within the app (e.g., coins in mobile games) via a secure channel.
While mobile users can be brought into the monetization loop,
it will be technically and legitimately easier for ad networks to
study users. We implemented the proof-of-concept framework
and conducted a test with 42 volunteers. Based on these studies,
we believe that “In-App AdPay” would balance user privacy and
user experience without interfering with the existing monetization
arrangements. Lastly, we reveal how tracked-by-consent users
react in different test scenarios and value the permissions used
in ad libraries.

Index Terms—Mobile Advertising, Usable Privacy, Usability
Testing & Surveys, User Interface, Unpaired Two-Sample T-Test

I. INTRODUCTION

As of 2016, smartphone markets in the United States and all

over the world are still prosperous. Likewise, mobile applica-

tions (apps) are widely prolific, and are usually developed by

third-party developers and downloadable from official and/or

unofficial app marketplaces. Although developers can sell

their apps on app stores, most of them merely offer their

apps for free. As a result, app developers generally make

money through a combination of in-app advertising and in-app
billing. In-app advertising has led the mobile ecosystem since

2009. After embedding one or more ad libraries provided by ad

networks within their apps, developers may consistently earn

money from the apps. According to the Interactive Advertising

Bureau (IAB) [1], in-app mobile advertising in the United

States totaled $20.7 billion and increased 65.6% in FY 2015

from the previous year. In 2011, Google came up with the

in-app billing service modeled after Apple’s iOS [2]. In-app

billing improves user experiences by helping them purchase

digital goods, either consumables or non-consumables. For

mobile apps in Google Play, the in-app product costs range

between $0.99 and $399.99. Actually, service providers of

in-app billing are not limited to those mobile OS providers.

For instance, TapJoy [3] also offers this monetization option.

Most developers are eager to include the in-app billing service.

According to [4], Candy Crush got over $1.3 billion from in-

app billing in 2014.
However, according to public media [5] and our own inter-

views with 43 volunteers, users usually feel somewhat or even

very uncomfortable with current advertisements (ads). Also,

users may get annoyed by unsolicited ads and develop negative

impressions towards advertised brands. As a result, AdBlock

receives a high rating with over 500 million downloads [6].

As for in-app billing, it may not be widely accepted by mobile

users. According to the survey from [7], over 80% of the

surveyed developers estimate that no more than 10% of users

make even one in-app purchase. [8] shows merely 0.15% of

gamers might be delivering 50% of the revenue through in-

app billing. [9] reveals a steady decline in number of in-app

billings within popular games (e.g., Candy Crush).
Due to these facts, we develop In-App AdPay, a new moneti-

zation service to let users actively trade their information upon

their consent via secure connections. In our framework, we

not only minimize changes to the current ecosystems but also

keep the existing monetization arrangements. Moreover, users

are allowed to actively request mobile ads for getting digital

goods. Meanwhile, in order to serve targeted ads, ad networks

are allowed to explicitly track users with consent. Lastly, while

ad networks get the same share from what developers earn

as the existing models, mobile users can also benefit from

viewing or clicking ads with virtual goods in our service.

After implementing the monetization framework on Android,

we conducted usability testing with 42 people from the same

volunteer pool. Based on their perceptions and expectations,

we found that In-App AdPay would harmonize the mobile

monetization ecosystem. However, according to the feedback,

over 70% of these 42 participants feel uncomfortable with

giving up their private information. Therefore, we further in-

vestigated how advertisers could induce users to actively trade

their information and get more tailored ads. We evaluate other

factors (e.g., ad clicks) that affect user decisions. Particularly,

our contributions include:

• We conducted a survey related to “in-app advertising”

and “in-app billing” with 43 adult volunteers. We find

that most participants have the same negative impression

2016 IEEE 22nd International Conference on Parallel and Distributed Systems

1521-9097/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPADS.2016.66

456



toward mobile ads in general, but share relatively diverse

viewpoints to targeted ads. Moreover for the users in our

sample, in-app billing is not popular.

• We implemented a prototype monetization service—In-

App AdPay. With a few minor changes on the ad network

side in the current “in-app advertising” framework, In-

App AdPay not only allows users to actively take a

“virtual” share from viewing and/or clicking ads, but

also lets ad networks avoid liability for collecting users’

private information. Meanwhile, with our framework,

no change is necessary for advertisers: use the same

console as before and pay the same amount of money

as usual. However, for the sake of financial incentives,

app developers would be motivated to secure network

connections between mobile users and ad networks. As

a result, more tailored ads will be served via secure

connections with users’ consent. We believe that In-App

AdPay will facilitate the mobile monetization ecosystem.

• We studied feedback and analyzed user data. While re-

ceiving relatively positive feedback from these users, we

recognize that people may still feel uncomfortable when

actively giving up their private information. Therefore,

we study how advertisers can induce users to trade

their information with virtual goods, and then provide

a quantitative value of each Android permission.

The rest of the paper is organized as follows. We describe

the motivation related to in-app advertising and in-app billing,

including workflows and user opinions, in Section II, followed

by its prototyping in Section III and evaluation results in Sec-

tion IV. After that, Section V discusses the benefits from In-

App AdPay and the potential limitations and countermeasures

for the framework. We provide related work in Section VI and

conclude this paper in Section VII.

II. MOTIVATION

A. Background
In-app advertising is popular in free apps. In this model, an

ad network can aggregate app developers and advertisers to

serve ads for users. Once the app developer’s publisher ID is

enclosed within the app, mobile ads can be refreshed every

12 to 120 seconds with a default rate of around 60 seconds

[10] [11]. As a relatively new media for advertising, the rates

of different mobile ads may depend on various factors (e.g.,

pricing model, device type, ad inventory, ad category, user

value and time). For example, a newly registered user may

cost an average of $9.54 for advertisers [12]. Also, the click-

through rates (CTRs) are below 2.5% and varies based on

devices and time [13]. Figure 1 depicts the in-app advertising

workflow. As for money, it flows from advertisers to app

developers through a designated ad network, which takes about

30% of the entire fund.

In-app billing is flexible for users, which allows a payment

agent to coordinate users with app developers. When opening

the in-app billing portal, users may have four options to make

purchases (i.e., add credit or debit cards, add paypal, enable

carrier billing, and redeem gift card). It can even replace app

Fig. 1. Workflows of In-App Advertising

Fig. 2. Workflows of In-App Billing

store purchase in the future because of the “remove ads”

option. The only reason that app store purchases are still

there may be because that is a passive way to protect “app

repackaging”. In-app billing usually offers either consumable

(e.g., virtual coins, props, or cloud storage for one month) or

durable (e.g., new game level) digital transactions. No matter

what type of digital purchase a user chooses, the payment

workflow behind the scenes is always conducted via HTTPS,

as depicted in Figure 2. Basically, users pay digital transactions

to the related app developers, whereas the payment agent takes

a commission fee of about 30% of the total amount.

B. User Opinions
In order to learn users’ opinions (e.g., user satisfaction) on

the two existing app monetization models, we conduct a survey

with 43 adult volunteers, including students, scholars and

staff, who have basic knowledge of smartphone usage. These

respondents, aged from 18 to 45 from 10 countries across

4 continents, are either tech-savvy or lay people. The survey

about user preferences on in-app advertising and in-app billing

contains “Yes or No” questions, multiple choice questions, and

open-ended questions. Every participant has signed the consent

form for the current surveys and the subsequent studies related

to In-App AdPay. All user-related studies were approved by

our Institute Review Board (IRB).

Table I shows user answers towards in-app advertising.

While mobile ads in general mostly receive negative im-

pressions from users, around 20% of the respondents feel

comfortable with personalized ads. But, none of them are glad

457



TABLE I
USERS’ CHOICES ON IN-APP ADVERTISING

mobile ads
in general

Feel

very comfortable 1
somewhat comfortable 1

neutral 15
somewhat uncomfortable 18

very uncomfortable 8

Click
yes (intentional) 6
yes (accidental) 14

no 24

tailored ads

See
yes 13
no 29

unanswered 1

Feel

very comfortable 1
somewhat comfortable 8

neutral 11
somewhat uncomfortable 14

very comfortable 8
circled both somewhat’s 1

Click
yes 17
no 25

circled both 1

Collect
Info

neutral 7
somewhat uncomfortable 12

very uncomfortable 24

TABLE II
USERS’ CHOICES ON IN-APP BILLING

Overall

very comfortable 6
somewhat comfortable 6

neutral 16
somewhat uncomfortable 11

very uncomfortable 4

Ever Used (14)

Single Transaction

<$1 2
$1-$5 8
$5-$10 2
>$10 1

Total Spending
<$20 9

$20-$50 4
>$100 2

Never Used (29)
will consider 9

won’t consider 20

to be tracked. Generally, one or more of the five attitudes is

expressed by the participants:

- Accept: “If it’s tailored for me, maybe I’ll click.” (P15)

- Understand: “..., but I understand they’re necessary for
the survival of free apps.” (P38)

- Neglect: “I don’t pay attention to mobile ads.” (P43)

- Dislike: “It’s a little bit annoying when ...” (P34)

- Counteract: “I use ad blockers.” (P30)

Moreover, users’ feelings on in-app billing are quite diverse.

Table II shows that less than 1/3 of the respondents have

utilized this monetization service, in which most of their single

transactions are below $5. In-app billing is mainly used to

unlock additional content (e.g., P26 and P30) or remove ads

(e.g., P24). Among the users who have never used in-app

billing in our sample, more than 2/3 may not consider the

option. These users may “not trust” the service (e.g., P25)

or simply “don’t use apps that require it” (e.g., P9). Also,

P36 mentions that “I’ve seen a lot of comments about in-app
purchases not working and people losing money”.

According to these results, there is potential to improve

both of the current monetization services from two different

aspects. In-app advertising may focus on making users feel

comfortable, whereas in-app billing can be used to increase

the client pool. Therefore, in our proposed framework, one of

our objectives is to ameliorate these two deficiencies.

C. Ad Library Permissions
Both Android and iOS devices require permissions for

serving mobile ads. The difference between these two plat-

forms is whether to explicitly declare permissions within apps.

Android has a fine-grained permission system, which consists

of over 130 permissions. In order to collect private information

from mobile users, app developers are required to implant ad

libraries with specific permissions, ranging from location to

accounts. However, users are not able to distinguish between

granted permissions that are used by the apps themselves, the

mobile ads, or both. Therefore, here we focus on identifying

the permissions usually asked by ad libraries.

Previous research works [14] [15] [16] [17] [18] listed

over 25 third-party libraries, among which 14 are still in

use with documentation in English1. Ad libraries usually

ask specific permissions to work properly. Based on Mobile

Rich Media Ad Interface Definition (MRAID) 2.0, about 21

permissions2 may be utilized in Android. While Vdopia asks

for GET ACCOUNTS, InMobi lists 11 permissions in the

current documentation (14 permissions when we checked in

mid-2015). The INTERNET permission is undoubtedly always

required by all ad libraries, and the Access Network State

permission also comes along in most cases. Therefore, there

are 19 ad-related permissions optionally used for ad libraries.

While the permissions are asked in compliance with

MRAID 2.0 for interactive rich media ads, most fall into the

categories (i.e., accounts, location, phone status and identity,

non-free services, file storages, hardware, and personal infor-

mation) that users should be wary of [19] [20] [21].

After replacing the Android ID with the user-resettable

advertising ID in 2013, users are able to select “Opt-out of

Interest-based ads” within the Google Settings app to prevent

receiving tailored ads across the device. Ad networks other

than Google also enable such a feature. For example, InMobi

uses the TRUSTe Ad Privacy Manager to provide in app opt-

out [22].

III. FRAMEWORK

The preliminary studies motivate us to come up with a more

user-friendly mobile monetization framework – In-App AdPay.

In this section, we elaborate on our design philosophy and

discuss the implementation details.

A. Methodology
When we look into the current monetization services, both

models let mobile apps contact a third-party to initiate the

designated service. But in in-app billing, all transactions are

1AdMob, Mopub, Vdopia, Mocean, Buzzcity, AppLovin, leadbolt, Mob-
fox, Smaato, Greystripe, MobClix (now Axonix), MillennialMedia (acquires
jumptap), InMobi, Airpush

2Internet, Access Network State, Vibrate, Write Contacts, Record Audio,
Get Accounts, Read Phone State, Call Phone, Write External Storage,
Read Calendar, Write Calendar, Activity Recognition, Camera, Wake Lock,
Read Logs, Access Coarse Location, Access Fine Location, Send SMS,
Access WiFi State, Change WiFi State, Read History Bookmarks

458



Fig. 3. Workflow of In-App AdPay

completed on the third-party side (i.e., the payment agent);

whereas in in-app advertising, a fourth-party (i.e., an adver-

tiser) will be selected by the third-party (i.e., the ad network)

to serve ads for end users. While either ad networks or

payment agents get a share from what app developers earn,

none of the alternatives carry benefits to end users. Rather, in-

app advertising may antagonize users who disagree with ad-

supported apps that track their information without consent,

which may potentially cause harm to the advertised brands.

The basic idea behind In-App AdPay is to let users get paid

with virtual goods after viewing/clicking a tailored ad from

a selected advertiser. In order to ensure ad personalization,

users have to actively request ads but surrender their private

information with consent. Given that both ad networks and

payment agents are essentially brokers, we are able to combine

the two roles into one in In-App AdPay. Moreover, financial

incentives motivate the app developers to work with every

ad network adapting In-App AdPay for securing the network

connections between users and ad networks, although the

vast majority of mobile ads served to AdMob have been

served via HTTPS since 2015 [23]. While money still flows

from advertisers to app developers, users are able to get

paid with virtual goods from app developers. Lastly, although

server redirection is mainly used in both existing services for

controlling connection speeds, we may still adopt a few client

redirections in our design to increase simplicity. It takes four

steps for users to complete such a transaction: (1) after getting

into the portal, the user can select an option, (2) the user must

grant the requested permissions to get a tailored ad, (3) the

user can click the ad to get into its landing page, and (4)

when the user returns from the landing page, the payment

will automatically be allocated. Figure 3 depicts the flowchart

in detail.

B. Implementation
According to Figure 3, our implementation consists of three

node.js servers providing an app developer, an ad network,

and 14 advertisers3, respectively, as well as an in-app user

interface with only minimum required features to conduct fur-

ther experiments. Each server runs its own MongoDB database

and follows the REST architectural style for all HTTP/HTTPS

connections. While the servers are hosted on a Mac mini (with

OS X) and two PCs (one with Windows 10 and another with

Ubuntu 14.04 Desktop), the user interface is implemented on

a Moto X (with Android 5.1). All devices are connected by a

switch and a wireless access point within a local network.

In order to complete a transaction, four steps are required:

(1) once a user makes an ad request, the request is logged

in the developer’s server and redirected to the ad network’s

server which asks for permissions via the In-App AdPay

portal; (2) once the user grants the permissions, a personalized

ad tag is sent; (3) once the user clicks the ad, a landing

page is rendered; (4) a payment request is automatically sent

and then verified by remote servers. Also, the first three

steps are manually handled by mobile users. Furthermore, five

points are emphasized in our design, as shown in Figure 3.

First, in step 1d, user consent is explicitly requested before

3We consider all advertisers’ simple landing pages are hosted on the same
server without a backend.

459



Fig. 4. User Interfaces

releasing private information. Second, in steps 1b and 3b, the

developer and the ad network log transactions respectively

during the redirections. Afterwards, in steps 2a and 4a, HTTPS

connections are used when granting the permissions to the ad

network and when asking for payment from the developer.

Moreover, steps 4c and 4d are optional only if the advertiser

adapts the Cost-Per-Action model4. Finally from step 4b to

step 4e, server-to-server communications are performed during

the long-polling phases.

We include both reasonable-case and worst-case scenarios

simultaneously in our implementation. Figure 4 depicts the

in-app user interface with seven price options between $0.49

and $3.49. These reasonable prices are set in regards to

relatively low revenues that app developers can earn for a

single click, since users’ information is worth as much as

advertisers are willing to pay for. When a user clicks on one

of the buttons, a dialog box pops up to request permissions

(as shown on the left of Figure 4). The higher the payment

asked by the user, the more ad-related permissions that are

asked. The ad network may also explicitly ask users for any

permissions that advertisers are interested in – the exception

being Internet and Access Network State, which are only for

Internet connectivity. For the worst case, instead of using

permission groups newly adopted in Google Play, we allow

users to see each permission description. After granting the

permissions, a randomly selected ad tag (size 468×60) is

displayed on the bottom (as shown on the right of Figure 4).

IV. EVALUATION

After implementing the framework, we conducted usability

testing with 42 volunteers, which are evenly divided into 7

groups. These participants were asked to repeatedly select

price options and decide whether to grant random Android

permissions. All the users’ actions and decisions are logged

in the background with their consent. After analyzing the

participants’ feedback from a group, we adjusted our test

scenario for the next group. Finally after all tests, we recognize

4Advertisers pay higher than ad view/click, but only if a user conducts a
closed sale or a particular action at the moment.

TABLE III
SEVEN TEST SCENARIOS

Group Times

No. of
Permis-

sions

Back-
ground

Button
Permu-
tation

No. of
Permissions
per Button

Click
Tracking

1 30 37 white yes

B1:1P,
B2:2P,

...,
B7:7P

no

2 50 37 white yes idem no

3 50 19 Skype no idem yes

4 50 19 white no idem yes

5 50 19 white no

B1&B2:1P,
B3&B4:2P,
B5&B6:3P,

B7:4P

yes

6 50 19 white no idem yes

7 50 19 white no 1P/B yes

that although user satisfaction rises, users still feel uncomfort-

able with information collection. Furthermore, after studying

the data from our evaluators, we identify which permissions

users care most about and how users can be enticed to give

advertisers access to them.

A. Usability Testing & Data Collection

According to [24], five users per usability test is sufficient

to assess the framework’s usability. Therefore, for our 42

volunteers, we set six to a group. Each specific test scenario

is conducted in each group. Moreover, for each button, the

permissions are randomly selected with Fisher-Yates shuffle

from our database. The seven scenarios and their differences

are shown in Table III5.

For Group 1 and Group 2, in order to prevent users from

making their decisions in advance, seven buttons are re-

permutated for each round. For the buttons in these two groups,

Button 1 (i.e., $0.49) renders 1 permission, Button 2 (i.e.,

$0.99) renders 2 permissions, Button 3 (i.e., $1.49) renders

3 permissions, and the other four buttons follow the same

rule. Both groups include 37 permissions, including the 19

permissions discussed in Section II-C along with another 18

similar permissions we picked out. Instead of the permissions

themselves, their official descriptions are displayed in the user

interface. While we start tracking ad clicks from Group 3,

we set a blue background with the Skype icon in Group 3.

Group 4 is the same as Group 3 except for the background.

Group 5 and Group 6 have the same number of permissions per

button in both cases. In Group 7, each button renders only one

permission. All logs are collected within the mobile device.

Each log consists of which button is clicked, what permissions

are requested, time taken to make a decision, and the decision.

460



TABLE IV
USER OPINIONS ABOUT IN-APP ADPAY

User
Perceptions

In-App AdPay

very comfortable 5
somewhat comfortable 18

neutral 8
somewhat uncomfortable 9

very uncomfortable 3

Advertiser

very comfortable 17
somewhat comfortable 18

neutral 4
somewhat uncomfortable 3

very uncomfortable 1

Ads
still memorized 25
not memorized 18

Permissions
still memorized 34
not memorized 9

Permission
Description

helpful for decision 38
helpless for decision 4

User
Expectations

Still spend money
Yes 20
No 22

Will use In-App AdPay
Yes 20
No 22

Still uncomfortable with info
collection

Yes 31
No 11

B. Opinions & Results
After finishing usability tests with 42 volunteers, we conduct

a survey related to In-App AdPay. Table IV depicts user opin-

ions, including perceptions and expectations, related to our

framework. Unsurprisingly, user perceptions were favorable:

while more than half of the evaluators were comfortable with

In-App AdPay, over 90% felt comfortable with advertisers. For

example, P2 thinks “it would work for majority of people”,

P24 feels that the service makes every party feel incentive,

and P38 points out that it’s a nice idea to get money from
the advertisers in a trade for some personal information as
long as the users is clearly informed of which information is
being exchanged. It also shows that nearly 60% recalled ads

and over 80% memorized permissions they have encountered

during the test, and over 90% made decisions according to the

permission descriptions. However, we find that over 70% of

the participants are uncomfortable when consenting to collect

their private information. After looking into their comments,

we find that:

-P1: “I don’t want to sacrifice my privacy for money.”
-P22: “I think anything more than approximate location is

invasive. I like how it gives clear control of the permissions
and how you can “earn” money for virtual transactions.”

-P29: “I was unlikely to agree if I was uncertain of the
permission’s impact.”

-P26: “I gave permissions that I thought were okay in
keeping my privacy intact. It is inevitable in our world now. I
would not mind as long as I feel that they respect my privacy to
a certain level. I think it is a good experience given that some
companies get these private information from people without
paying them anyways.”

We believe that users may not wish to surrender their private

information, but everyone sets prices for different categories

of private information. Therefore, we conducted a log analysis

5B: Button, P: Permission

Fig. 5. Individual Differences

to reveal how users value their private information in different

scenarios. The results will give advertisers a better way to

induce users without violating the policies regarding data

privacy. Moreover, all groups have slight differences, except

Group 5 and Group 6 are the same. However, since Group 1

and Group 2 contain permissions not related to mobile ads,

we focus on the other 5 groups.

Individual Differences Individuals do not view privacy uni-

formly. As used in [25], we classify our volunteers into three

separate clusters: the privacy fundamentalist, the pragmatic

majority, and the marginally concerned. While the privacy

fundamentalists find it extremely unacceptable to give up their

private information, the marginally concerned individuals feel

indifferent. The pragmatic majority group falls in the middle.

See Figure 5. On the left side, the volunteers with less than 10

“Yes” are considered as the privacy fundamentalists and the

one with more than 40 “Yes” are treated as the marginally

concerned. Whereas, on the right side, the privacy funda-

mentalists select less than 6 permissions, but the marginally

concerned people allow more than 16 permissions. We notice

that different settings (i.e., number of permissions per button)

trend towards two opposite directions for user choices: When

users are asked to grant more permissions for higher prices, as

shown in Group 3 and Group 4, “Yes”-related demographics

move towards privacy fundamentalists in permissions-related

demographics. However, when asking for less permissions, as

shown in Group 5 and Group 6, “Yes”-related demographics

move towards the marginally concerned side in permissions-

related demographics. As Group 7 asks only one permission

per button, there is no significant difference between “Yes”-

related and permissions-related demographics.

Influences of Trustful Apps Group 3 and Group 4 are the

same, except for having different backgrounds: the volunteers

in Group 3 were directed to use a service within Skype. We

consider the null hypothesis (H0a): There is no difference in
user satisfaction with advertisers between Skype background
and white background. We quantize user satisfaction into 5

461



Fig. 6. Different Backgrounds (left: Skype, right: white)

values (i.e., very comfortable: 1, somewhat comfortable: 0.75,

neutral: 0.5, somewhat uncomfortable: 0.25, and very uncom-

fortable: 0) and then weight the results with ad memorization

(i.e., still memorized: 1.25, and not memorized: 0.8). An

unpaired two-sample t-test6 shows suggestive evidence that

the null hypothesis does not hold (t=-1.84, p=0.095599, two-

tailed). Therefore, we deduce that users may be more satisfied

in using the service within a well-known app like Skype.

As we observe that in Group 3 and Group 4, there are more

privacy fundamentalists in permissions-related than “Yes”-

related demographics. We focus on the differences when

using the service within a well-known app like Skype and an

unknown app, as depicted respectively in Figure 6. In Group

4, users are more reluctant to click on higher paid options

with granting more permissions. As a result, a few permissions

do not appear due to the test’s randomization. However, we

cannot find any evident relation between granted permissions

and their CTRs (i.e., ad clicked over ad requested). Therefore,

users may be more satisfied with advertisers by granting more

permissions for In-App AdPay within a well-known app.

Relations between Permissions and Prices/CTRs Group

5 and Group 6 are exactly the same, which render 1-4

permissions when a button is clicked. Therefore, we consider

the two groups as a whole (i.e., 12 people). As for Group

7, it shows only 1 permission per button click. In order to

evaluate user satisfaction with advertisers in the groups asking

for less permissions, we set Group 4 as the benchmark for

the null hypothesis (H0b): There is no difference in user
satisfaction with advertisers when providing different number

6We use two separate sets of unpaired samples for a statistical hypothesis
test in which the test statistic follows a Student’s t-distribution under the null
hypothesis. It can be used with extremely small sample sizes [26].

Fig. 7. Number of Permissions per Button (left: 1-4, right: 1)

of permissions per button click. The unpaired two-sample t-
test (i.e., Group 4 vs. Groups 5&6) surprisingly fails to reject

the null hypothesis (t=-1.71616, p=0.105457, two-tailed) due

to an individual who answers “somewhat uncomfortable” and

“not memorized”. When we exclude this individual’s answers

from our sample, there is a significant evidence that the

null hypothesis does not hold (t=-3.15544, p=0.006539, two-

tailed). Therefore, user satisfaction with advertisers in Groups

5&6 is different from that in Group 4. As for Group 7, it

fails to reject the hull hypothesis (t=-0.03197, p=0.976657,

two-tailed) when comparing with Group 4. Accordingly, three

points are highlighted: (1) it’s unavoidable to bring a high

variance into usability testing by extremists, (2) it shows that

1-4 permissions per button click makes most users satisfied

with advertisers, and (3) one permission per button click does

not help increase user satisfaction with advertisers from the

original settings in Group 4.

Figure 7 shows the CTRs of ad-related permissions in

Groups 5&6 and Group 7. While the CTRs in Figure 6 are all

above 50%, we witness a more diverse distribution in Figure 7.

Specifically, the CTRs of 7 ad-related permissions are below

20% (i.e., Send SMS, Read Logs, Change WiFi State, and

Write External Storage) and 0% (i.e., Access Fine Location,

Write Calendar, and Call Phone) in Group 7. While most

permission rankings in terms of CTR are changed between

the two charts in Figure 7, Access Coarse Location remains

first in ranking but gets a higher CTR in Group 7, and the CTR

of Read Calendar keeps within the same range. Since Group

7 allows only one permission per button click, we believe that

the CTRs in Group 7 better reflect the actual user preferences

for different ad-related permissions. However, we also deduce

462



that the strategy of rendering permissions in a combination

increases the overall CTRs and gets more user information.

Table V displays the median, mean and standard deviation

of each permission’s prices evaluated by the volunteers in

Figure 7. Similarly, while one permission per button click

in Group 7 may reflect the actual user viewpoints on each

permission, the strategy of rendering permissions in a com-

bination in Groups 5&6 results in a lower users’ permission-

value expectation, which helps advertisers develop a better

approach to allocate their budgets when using In-App AdPay.

V. DISCUSSION

In this section, we discuss the current situation in mobile

advertising from three aspects (i.e., standard, network and

operating system). Afterwards, we discuss three important

questions. One, how can the “In-App AdPay” framework

benefit every entity in the whole ecosystem? Two, what are

the limitations of our prototype? And, three is whether there

any countermeasures for these limitations?

MRAID, led by the IAB, defines a common API for mobile

rich media ads with HTML5 and JavaScript. It enables ad

makers to build rich media ads capable of running across

different mobile apps. MRAID v1.0 and v2.0 were consec-

utively released in 2011 and 2012. However, in order to

fully unlock the functionalities, an MRAID compliant SDK

in Android has to add permissions such as RECORD AUDIO

or WRITE EXTERNAL STORAGE. On the mobile side,

Google made a few modifications on Android related to mobile

ads, directly (e.g., Google launched “HTTPS Everywhere”

on mobile ads in 2015 [23].) or indirectly (e.g., Users can

only view at most 17 groups of related permissions and no

longer see the INTERNET permission when installing an

app since Android 4.4 [27].). Furthermore, Android 6.0 is

allowed to enforce permissions at runtime. All permission-

related adjustments make it possible to design a more fine-

grained authorization framework.

A. Benefits
Admittedly, a new advertising framework can be adapted

only if it is not harmful for any role in mobile advertising.

Also, it will be even a plus if the solution brings benefits to

each player in the ecosystem, including users. In the current

framework, money flow starts from an advertiser, passes

through an ad network and then ends at a developer. This still

happens in In-App AdPay: the advertiser still pays the same

amount for an ad, through the ad network, to the designated

app developer. However, in our model, the app developer

should offer the user in-app virtual credits (e.g., virtual coins

in a game). As these in-app virtual credits are generated by

app developers for free, nothing has been changed with regards

to money flows. Technology-wise, no change is necessary for

advertisers (i.e., use the same console & pay the same amount),

and there are only subtle modifications (i.e., combine roles of

ad networks and payment agents) on the ad network side with

a renewed ad library for app developers.

However, In-Ad AdPay comes up with additional benefits

for different sides:

• User: (1) users are brought into the monetization loop,

(2) users are allowed to actively trade their private in-

formation upon their consent, and (3) users can still get

personalized ads via HTTPS.

• Advertiser: positive impressions from users may help the

advertised brands.

• Ad Network: (1) ad networks will not face any potential

ethical and legal issues when collecting user information

and serving personalized ads, and (2) secure channels are

automatically applied to secure virtual transactions.

• App Developer: (1) financial incentives motivate app

developers to work with ad networks to secure connec-

tions, and (2) in order to earn more from mobile ads,

developers expect to have a higher CTR. Although a solid

measurement must be tested on the app marketplace, our

primary test results show a leap in CTR.

B. Limitations
Three kinds of limitations may occur: experiment-related,

technique-related and human-related.

While In-App AdPay concentrates on mitigating the ex-

isting issues of in-app advertising (e.g., bad impressions on

advertisers), it may potentially cause users to neglect in-app

billing’s low price options. Moreover, although it is statistically

sufficient to cover different test scenarios with merely 42

volunteers, it would be better to recruit more participants

for in-depth studies for assessing the optimal value of the

population’s private data more precisely.

Two technical issues cannot be resolved by In-App AdPay:

(1) click fraud initiated by app developers, and (2) inappro-

priate data collection conducted by ad networks. In order to

increase their income, malicious apps may programmatically

trick clicks on mobile ads. Whereas, in our framework, unless

the privilege de-escalation for ad libraries is implemented, ad

networks can still request all data granted by app permissions.

Our monetization framework gives users great flexibility

to control ad requests. Therefore, we expect a significant

reduction in accidental ad clicks. However, for the sake of

earning “virtual” coins, users may intentionally request and

then click ads, which results in burning advertisers’ budgets.

Also, users’ private information (e.g., geolocation) may be

changed over time. Furthermore, we also find three concerns

from users’ comments: (1) several users (i.e., P3, P8, P27 and

P30) do not want their phones out of control until the service

has been trusted, (2) P1 prefers to opt in permissions, and (3)

P8 wants to consider only higher payment and fewer privacy-

related permissions.

C. Countermeasures
Both technical problems discussed previously have some

solutions provided by other researchers. In Android, fraudulent

developers are able to programmatically forge click events

within their apps to increase ad revenue. In-App AdPay may

also suffer from such attacks. To mitigate this issue, AFrame

[28] and LayerCake [29] allow embedded user interfaces, such

as ad libraries, to run as a separate process within an app. In

AFrame, developers place ads in an isolated region running a

463



TABLE V
USERS’ PRICE EXPECTATIONS ON AD-RELATED PERMISSIONS

Permission Median Mean Stdev
Groups 5&6 Group 7 Groups 5&6 Group 7 Groups 5&6 Group 7

Access Coarse Location 0.890833 2.24 0.858594 2.04 0.10736 0.647109
Access Fine Location 0.86 2.156667 0.868629 1.698333 0.103363 0.909059
Access WiFi State 0.86625 2.99 0.87694 2.04 0.090729 1.30384
Activity Recognition 0.8535 2.406667 0.808394 2.406667 0.139274 1.532065
Call Phone 0.834347 N/A 0.861472 N/A 0.09486 N/A
Camera 0.89299 2.49 0.853298 2.61 0.147533 0.544977
Change WiFi State 0.7575 2.49 0.720243 2.49 0.170563 0
Get Accounts 0.805 1.74 0.750668 2.003889 0.157695 0.530875
Read Calendar 0.950764 2.24 0.937623 1.906667 0.069279 1.2829
Read History Bookmarks 0.884427 1.49 0.886677 1.79 0.094897 0.67082
Read Logs 0.923542 2.24 0.932054 2.24 0.057893 0.353553
Read Phone State 0.8725 1.99 0.905853 1.865 0.062061 0.629153
Record Audio 0.89996 2.281667 0.890471 2.281667 0.102696 0.648181
Send SMS 0.838125 0.99 0.840602 0.99 0.105888 0
Vibrate 0.844333 2.49 0.866509 2.156667 0.119822 0.874007
Wake Lock 0.897292 1.24 0.872635 1.656667 0.106897 0.946485
Write Calendar 0.913889 N/A 0.926364 N/A 0.043033 N/A
Write Contact 0.921094 0.49 0.8518 0.49 0.185564 0
Write External Storage 0.995 N/A 0.969583 N/A 0.043537 N/A

different process from the main activity, so that the host app

cannot click on the ad activity. LayerCake uses the Android

WindowManager to display the ad activity in a new window on

top of the window of the main activity. Also, AdAttester [30]

uses ARM’s TrustZone to make sure unforgeable clicks and

verifiable display. Furthermore, MAdFraud [17] automatically

runs apps to trigger and expose two fraudulent ad behaviors,

including clicking on ads without user interaction. In order to

prevent unintentional data disclosure, since “In-App AdPay”

allows ad networks to collect private information under user

consent, we also need solutions, such as TaintDroid [31] to

monitor sensitive information on smartphones with dynamic

taint analysis. Furthermore, after a user grants permissions,

methods such as VetDroid [32] and Permlyzer [33] are re-

quired to monitor permission use and data authentication.

Due to time constraints and budget limitations, human-

related limitations are out of our scope. The potential adapters

on the ad network side can add AI to mitigate user-initiated

click fraud and to reward users’ ad requests, and design a more

sophisticated authorization system (e.g., control panel) to opt

in/out permissions if necessary. Besides, it takes time to add

trust for a new service.

VI. RELATED WORK

To the best of our knowledge, none of the previous works

are directly related to our work, but we find our project is

somewhat relevant to four technical areas. One is about three

similar ad formats in the industry, and the other three have

been studied in the research community.

Ad Types Rewarded Video Ads [34], a kind of reward-

based app ads embedded in an app, offers rewards to users

for clicking and viewing sponsored video ads promoting other

mobile apps. While such unrelated ads reach a high average

click-through rate of 13.64% [35], Apple started rejecting apps

that reward video views [36]. Also, Google offers In-App
Purchase Ads [37] to display multiple in-app purchase items

for sale within a single mobile ad. Obviously, that ad format

is different from our settings.

Security in App Monetization Researchers have been

paying attention to smartphone security and privacy in dif-

ferent monetization methods since 2012. In [38], researchers

examined 100K Android apps and identified 100 representative

in-app ad libraries within 52.1% of these apps. AdRisk detects

risks from uploading sensitive information to remote servers

to executing untrusted code from Internet sources. Similarly,

researchers in [16] investigated user privacy in 13 popular

ad libraries by classifying the permissions specified in their

documentation as well as figuring out the misused permissions

and insecure JavaScript interfaces. As for in-app billing,

VirtualSwindle [39] finds 60% of 85 popular Android apps

are automatically and easily crackable when developers do

not rigorously follow Google’s guidelines. PEDAL [40] de-

escalates privileges for ad libraries from host apps.

Android Permissions Mobile apps may be made by all

types of developers. In order to get income and add features,

developers may import third-party libraries into their apps.

These libraries may demand specific permissions, such as

sharing location data, to work properly. Android’s permissions

are used to inform users the potential dangers of installing

apps. However, developers usually include more and more

unnecessary permissions within their apps. Therefore, mobile

privacy researchers looked into Android permissions. [41]

finds about 5.8% of the 700 tested apps crash after a per-

mission is removed and investigated the effect of removing

a few popular permissions. Researchers in [42] revealed the

market shares and the permissions used by various ad libraries

over time (e.g., More and more permissions are used in

ad libraries). [43] shows that a user’s privacy preference is

strongly influenced by the purpose of using such a permission.

Human Factors User studies in smartphones are more

or less related to permissions. In [44], authors utilize two

guiding principles to make a selection among four permission-

464



granting mechanisms (i.e., automatic granting, trusted UI,

runtime consent dialogs, and install-time warnings). Felt et al.

run two usability studies and revealed that current permission

warnings in Android do not help users make decisions during

installation [45]. Meanwhile in [46], Kelly et al. found a

clearer privacy warning could direct users to install apps

requesting fewer permissions. Researchers also looked into

permissions in details. In [47], every dangerous permissions

used in different scenarios (i.e., publicly, with friends, with

advertisers, and sent to servers) are ranked by users. Also

in [48], researchers revealed that in order to let users assess

evaluate apps easily, risks should be decomposed into four

different dimensions (e.g., personal information privacy, and

data integrity).

VII. CONCLUSION

In this paper, we propose In-App AdPay, a new monetization

service which allows advertisers “pay” targeted users for

virtual transactions via secure connections. While keeping

most of the existing framework’s functionality unchanged, In-

App AdPay brings mobile users into the monetization loop.

After testing with 43 adult volunteers about in-app advertising

and in-app billing, we conducted a usability test of In-App

AdPay with 42 people from the same pool. According to their

feedback, we witness a great improvement of user satisfaction

on advertisers. Furthermore, a closer examination of user

activities discovers how users view advertisers and value

permissions in different test scenarios. Finally, we believe that

In-App AdPay will favor all players and facilitate the mobile

advertising ecosystem.

ACKNOWLEDGMENT

This work is partially sponsored by the National Key

Research and Development Program of China under grant No.

2016YFB0800100 (2016YFB0800102) and the CCF-Tencent

Open Research Fund.

REFERENCES

[1] IAB Internet Advertising Revenue FY 2015, https://www.iab.com/wp-
content/uploads/2016/04/IAB-Internet-Advertising-Revenue-Report-
FY-2015.pdf

[2] Android’s in-app billing is out to consumers, http://www.adweek.com/
socialtimes/android-in-app-billing/508003

[3] Purchase tracking in Tapjoy, http://dev.tapjoy.com/sdk-integration/
android/getting-started-guide-publishers-android/

[4] Candy crush saga players spent over $1.3 billion, http://www.
macrumors.com/2015/02/13/candy-crush-saga-revenue-2014/

[5] Most Annoying, http://dazeinfo.com/2012/12/18/ads-on-mobile-apps-
and-online-videos-are-most-annoying/

[6] Adblock Plus passes 500 million downloads, http://venturebeat.com/
2016/01/22/10-years-in-adblock-plus-passes-500-million-downloads/

[7] Mobile app monetization trends, http://blog.desk.pm/wp-
content/uploads/2015/05/App-Annie-IDC-Mobile-App-Advertising-
Monetization-Trends-2013-2018-EN.pdf

[8] A long tail of whales, http://recode.net/2014/02/26/a-long-tail-of-
whales-half-of-mobile-games-money-comes-from-0-15-percent-of-
players/

[9] Not popular with gamers, http://www.csmonitor.com/Business/Saving-
Money/2014/0302/In-app-purchases-not-popular-with-gamers

[10] Vallina-Rodriguez, N., et al.: Breaking for Commercials: Characterizing
Mobile Advertising. IMC 2012.

[11] Falaki, H., et al.: A First Look at Traffic on Smartphones. IMC 2010.
[12] Liftoff releases q1 2015 mobile app engagement index,

http://liftoff.io/liftoff-releases-q1-2015-mobile-app-engagement-index-
details-cpa-trends-across-category-platform-and-gender/

[13] Digital Advertising Benchmarks 2014, http://www.slideshare.net/
augustinefou/digital-advertising-benchmarks-2014-by-augustine-fou

[14] Book, T., Wallach, D.: A Case of Collusion: A Study of the Interface
between Ad Libraries and Their Apps. SPSM 2013.

[15] Book, T., Wallach, D.: An Empirical Study of Mobile Ad Targeting.
Technical report 2015.

[16] Stevens, R., et al.: Investigating User Privacy in Android Ad Libraries.
MoST 2012.

[17] Crussell, J., et al.: MAdFraud: Investigating Ad Fraud in Android
Applications. MobiSys 2014.

[18] Nath, S.: MAdScope: Characterizing Mobile In-App Targeted Ads.
MobiSys 2015.

[19] Android’s app permissions were just simplified, now they’re much less
secure, http://www.howtogeek.com/190863/androids-app-permissions-
were-just-simplified-now-theyre-much-less-secure/

[20] A guide to understanding android app permissions, http://www.hongkiat.
com/blog/android-app-permissions/

[21] Mobile apps collect information about users, http://www.pewresearch.
org/fact-tank/2014/04/29/mobile-apps-collect-information-about-users-
with-wide-range-of-permissions/

[22] Inmobi opt-out, http://www.inmobi.com/page/opt-out/
[23] “https everywhere”, http://doubleclickadvertisers.blogspot.com/2015/04/

ads-take-step-towards-https-everywhere.html
[24] How many test users in a usability study?, https://www.nngroup.com/

articles/how-many-test-users/
[25] Ackerman, M., et al.: Privacy in E-Commerce: Examining User Scenar-

ios and Privacy Preferences. EC 1999.
[26] De Winter, J.: Using the Students T-Test with Extremely Small Sample

Sizes. PARE 2013.
[27] Review app permissions thru android 5.9, https://support.google.com/

googleplay/answer/6014972?hl=en
[28] Zhang, X., et al.: AFrame: Isolating Advertisements from Mobile

Applications in Android. ACSAC 2013.
[29] Franziska R.,Tadayoshi K.: Securing Embedded User Interfaces: An-

droid and Beyond. USENIX Security 2013.
[30] Li, W., et al.: AdAttester: Secure Online Mobile Advertisement Attes-

tation Using TrustZone. MobiSys 2015.
[31] Enck, W., et al.: TaintDroid: An Information-Flow Tracking System for

Realtime Privacy Monitoring on Smartphones. USENIX OSDI 2010.
[32] Zhang, Y., et al., Wang, X., Zang, B.: Vetting Undesirable Behaviors in

Android Apps with Permission Use Analysis. CCS 2013.
[33] Xu, W., et al.: Permlyzer: Analyzing Permission Usage in Android

Applications. ISSRE 2013.
[34] Big growth for rewarded video ads, http://venturebeat.com/2015/03/01/

supersonic-sees-big-growth-for-rewarded-video-ads-in-mobile-games-
interview/

[35] Pros & cons of 5 mobile ad options, http://blog.kiip.me/developers/
mobile-ad-options/

[36] Apple store policy of rejecting apps with rewarded video, http:
//techcrunch.com/2014/06/24/app-store-policy-of-rejecting-apps-with-
rewarded-video-social-sharing-gets-rolled-back-with-a-few-caveats/

[37] In-app purchase ads, https://developers.google.com/admob/android/iap
[38] Grace, M., et al.: Unsafe Exposure Analysis of Mobile In-App Adver-

tisements. WiSec 2012.
[39] Mulliner, C., et al.: Virtualswindle: An Automated Attack against In-App

Billing on Android. ASIACCS 2014.
[40] Liu, B., et al.: Efficient Privilege De-Escalation for Ad Libraries in

Mobile Apps. MobiSys 2015.
[41] Kennedy, K., et al.: Quantifying the Effects of Removing Permissions

from Android Applications. MoST 2013.
[42] Book, T., et al.: Longitudinal Analysis of Android Ad Library Permis-

sions. MoST 2013.
[43] Lin, J., et al.: Modeling Users Mobile App Privacy Preferences: Restor-

ing Ssability in a Sea of Permission Settings. SOUPS 2014.
[44] Felt, A., et al.: How to Ask for Permission. HotSec 2012.
[45] Felt, A., et al.: Android permissions: User Attention, Comprehension,

and Behavior. SOUPS 2012.
[46] Kelley, P., et al.: Privacy as Part of the App Decision-Making Process.

CHI 2013.
[47] Felt, A., et al.: I’ve Got 99 Problems, but Vibration ain’t One: A Survey

of Smartphone Users’ Concerns. SPSM 2012.
[48] Jorgensen, Z., et al.: Dimensions of Risk in Mobile Applications: A

User Study. CODASPY 2015.

465


